Difference between revisions of "10-601 Logistic Regression"

From Cohen Courses
Jump to navigationJump to search
Line 12: Line 12:
 
=== Assignment ===
 
=== Assignment ===
  
* Implement logistic regression and apply it to a couple of datasets, using a gradient descent to optimize. Experiment by changing the regularization parameter. (Details to be posted later.)
+
* Implement logistic regression and apply it to a couple of datasets, using a gradient descent to optimize. Experiment by changing the regularization parameter and learning rate.
  
 
=== What You Should Know Afterward ===
 
=== What You Should Know Afterward ===

Revision as of 09:49, 18 September 2013

This a lecture used in the Syllabus for Machine Learning 10-601

Slides

Readings

Assignment

  • Implement logistic regression and apply it to a couple of datasets, using a gradient descent to optimize. Experiment by changing the regularization parameter and learning rate.

What You Should Know Afterward

  • How to implement logistic regression.
  • Why regularization matters.
  • How logistic regression and naive Bayes are similar and different.
  • What "overfitting" is, and why optimizing performance on a training set does not necessarily lead to good performance on a test set.