Difference between revisions of "10-601 Logistic Regression"
From Cohen Courses
Jump to navigationJump to searchLine 1: | Line 1: | ||
− | This a lecture used in the [[Syllabus for Machine Learning 10-601]] | + | This a lecture used in the [[Syllabus for Machine Learning 10-601 in Fall 2014]] |
=== Slides === | === Slides === |
Revision as of 16:33, 21 July 2014
This a lecture used in the Syllabus for Machine Learning 10-601 in Fall 2014
Slides
Readings
- William's notes on SGD (for 10605)
- Charles Elkan's notes on SGD
- Lazy Sparse Stochastic Gradient Descent for Regularized Multinomial Logistic Regression, Carpenter, Bob. 2008. See also his blog post on logistic regression.
What You Should Know Afterward
- How to implement logistic regression.
- Why regularization matters.
- How logistic regression and naive Bayes are similar and different.
- The difference between a discriminative and a generative classifier.
- What "overfitting" is, and why optimizing performance on a training set does not necessarily lead to good performance on a test set.