Difference between revisions of "10-601 Logistic Regression"

From Cohen Courses
Jump to navigationJump to search
Line 1: Line 1:
This a lecture used in the [[Syllabus for Machine Learning 10-601]]
+
This a lecture used in the [[Syllabus for Machine Learning 10-601 in Fall 2014]]
  
 
=== Slides ===
 
=== Slides ===

Revision as of 16:33, 21 July 2014

This a lecture used in the Syllabus for Machine Learning 10-601 in Fall 2014

Slides

Readings

What You Should Know Afterward

  • How to implement logistic regression.
  • Why regularization matters.
  • How logistic regression and naive Bayes are similar and different.
  • The difference between a discriminative and a generative classifier.
  • What "overfitting" is, and why optimizing performance on a training set does not necessarily lead to good performance on a test set.