Difference between revisions of "10-601 Classification and K-NN"

From Cohen Courses
Jump to navigationJump to search
Line 8: Line 8:
 
=== Readings ===
 
=== Readings ===
  
* Mitchell, Chapter 3.
+
* Mitchell, Chapters 1,2 and 8.
  
 
=== What You Should Know Afterward ===
 
=== What You Should Know Afterward ===

Revision as of 12:33, 15 August 2014

This a lecture used in the Syllabus for Machine Learning 10-601 in Fall 2014

Slides

Readings

  • Mitchell, Chapters 1,2 and 8.

What You Should Know Afterward

  • What is the goal of classification
  • Bayes decision boundary for classification
  • Is there an optimal classifier?
  • What the K-NN algorithm is.
  • What the computational properties of eager vs lazy learning are in general, and K-NN in specific.
  • What decision boundary is defined by K-NN, and how it compares to decision boundaries of linear classifiers.
  • How the value of K affects the tendency of K-NN to overfit or underfit data.
  • (optional) probabilistic interpretation of KNN decisions