Difference between revisions of "10-601 Topic Models"

From Cohen Courses
Jump to navigationJump to search
Line 1: Line 1:
This a lecture used in the [[Syllabus for Machine Learning 10-601 in Fall 2014]]
+
This a lecture used in the [[Syllabus for Machine Learning 10-601B in Spring 2016]]
  
 
=== Slides ===
 
=== Slides ===
Line 7: Line 7:
 
=== Readings ===
 
=== Readings ===
  
 +
* Muphy 27.1-27.3
 
* LDA is not covered in Mitchell.  There's a nice [http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf overview paper on LDA] by David Blei.
 
* LDA is not covered in Mitchell.  There's a nice [http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf overview paper on LDA] by David Blei.
  

Revision as of 15:55, 6 January 2016

This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016

Slides

Readings

Summary

You should know:

  • what Gibbs sampling is, and how it can be used for inference in a directed graphical model.
  • what the graphical models are which are associated with supervised naive Bayes, unsupervised naive Bayes, PLSI, and LDA.
  • the relationships between PLSI and matrix factorization.
  • how the posterior distribution in a Bayesian model can be used for dimension reduction.