Difference between revisions of "10-601 Topic Models"

From Cohen Courses
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 9: Line 9:
 
=== Readings ===
 
=== Readings ===
  
* Muphy 27.1-27.3
+
* Murphy ch 27.3 (don't read 27.3.6) and 27.4.
* LDA is not covered in Mitchell.  There's a nice [http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf overview paper on LDA] by David Blei.  It is also covered in Murphy ch 27.3 (don't read 27.3.6) and 27.4.
+
* LDA is not covered in Mitchell.  There's a nice [http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf overview paper on LDA] by David Blei.   
  
 
* Here's the [http://www.cs.cmu.edu/~wcohen/10-601/lda-demo code I discussed in class] and some sample data.
 
* Here's the [http://www.cs.cmu.edu/~wcohen/10-601/lda-demo code I discussed in class] and some sample data.
 +
* [https://en.wikipedia.org/wiki/Dirichlet-multinomial_distribution The Dirichlet-multinomial page on wikipedia] has a good discussion of collapsed Gibbs sampling.
  
 
===  Summary  ===
 
===  Summary  ===

Latest revision as of 16:35, 4 April 2016

This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016

Poll: https://piazza.com/class/ij382zqa2572hc

Slides

Readings

  • Murphy ch 27.3 (don't read 27.3.6) and 27.4.
  • LDA is not covered in Mitchell. There's a nice overview paper on LDA by David Blei.

Summary

You should know:

  • what Gibbs sampling is, and how it can be used for inference in a directed graphical model.
  • what graphical models are associated with supervised naive Bayes, unsupervised naive Bayes, and LDA.