|
|
Line 16: |
Line 16: |
| | | |
| <math> | | <math> |
− | C(\theta, \lambda; L_{n}) & = & L(\theta; \mathcal{L}_{n}) - \lambda H(Y|X,Z; \mathcal{L}_{n}) | + | C(\theta, \lambda; L_{n}) = L(\theta; \mathcal{L}_{n}) - \lambda H(Y|X,Z; \mathcal{L}_{n}) |
− | & = & \sum^{n}_{i=1} \text{log}(\sum^{K}_{k=1} z_{ik}P(Y^{i}=w_{k}|X^{i}))
| + | = \sum^{n}_{i=1} \text{log}(\sum^{K}_{k=1} z_{ik}P(Y^{i}=w_{k}|X^{i})) |
| </math> | | </math> |
Revision as of 20:28, 8 October 2010
Minimum entropy regularization can be applied to any model of posterior distribution.
The learning set is denoted
,
where
:
If
is labeled as
, then
and
for
; if
is unlabeled,
then
for
.
The conditional entropy of class labels conditioned on the observed variables:
The posterior distribution is defined as