Difference between revisions of "Melia et al AISTATS 2001"

From Cohen Courses
Jump to navigationJump to search
Line 12: Line 12:
 
<math>
 
<math>
 
NCut(A, \overline{A}) = \left( \frac{1}{Vol(A)} + \frac{1}{vol(\overline{A})}\right) \sum_{i \in A; j \in \overline{A}} S_{ij}\\
 
NCut(A, \overline{A}) = \left( \frac{1}{Vol(A)} + \frac{1}{vol(\overline{A})}\right) \sum_{i \in A; j \in \overline{A}} S_{ij}\\
Vol(X) = \sum_{i \in X} \sum_{j\in I} S_{ij}
+
 
 +
 
 +
 
 
</math>
 
</math>
  
 
== Related papers ==
 
== Related papers ==

Revision as of 12:57, 4 February 2011

Citation

Marina Melia and Jianbo Shi. 2001. A Random Walks View of Spectral Segmentation. In AISTATS 2001.

Online version

Available on Marina Melia's Website

Summary

This paper gives a general theoretical interpretation of a wide variety of spectral methods. The authors first present the general framework of normalized cuts. We assume we are given an index set and similarity matrix where entry represents a similarity between item and item . We then seek a partition of into two sets . Minimizing the following criteria: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NCut(A, \overline{A}) = \left( \frac{1}{Vol(A)} + \frac{1}{vol(\overline{A})}\right) \sum_{i \in A; j \in \overline{A}} S_{ij}\\ }

Related papers