Difference between revisions of "GeneralizedIterativeScaling"

From Cohen Courses
Jump to navigationJump to search
Line 19: Line 19:
 
== Existence of a solution ==
 
== Existence of a solution ==
  
If <math>p</math> of form (1) exists satisfying (2), then it minimizes <math>KL[p, \pi]</math> and is unique.
+
If <math>p</math> of form (1) exists satisfying (2), then it minimizes <math>KL[p, \pi]</math> and is unique. Since <math>\pi_i</math> are constant; it essentially boils down to the following statement.
 +
 
 +
=== Maximizing Entropy ===
 +
 
 +
If there exists a positive probability function of the form
 +
 
 +
<math> p_i = \mu \prod_{s=1}^{d} \mu_s^{b_{si}} </math>
 +
 
 +
satisfying (2), then it maximizes the entropy <math>H(p) = - \sum_i p_i log(p_i)</math>

Revision as of 10:09, 27 September 2011

This is one of the earliest methods used for inference in log-linear models. Though more sophisticated and faster methods have evolved, this method provides an insight in log linear models.

What problem does it address

The objective of this method is to find a probability function of the form

satisfying the constraints

where is an index set; the probability distribution over which has to be determined, is a probability distribution and is a subprobability function (adds to 1 but for any ); is constant.

Existence of a solution

If of form (1) exists satisfying (2), then it minimizes and is unique. Since are constant; it essentially boils down to the following statement.

Maximizing Entropy

If there exists a positive probability function of the form

satisfying (2), then it maximizes the entropy