Difference between revisions of "Integer Linear Programming"
Line 28: | Line 28: | ||
== References / Links == | == References / Links == | ||
− | + | * Wikipedia article on Integer Programming - [http://en.wikipedia.org/wiki/Integer_programming] | |
− | * Wikipedia article on | ||
== Relevant Papers == | == Relevant Papers == |
Revision as of 02:00, 28 September 2011
Summary
Integer Linear Programming (ILP) is a method for:
- Optimizing a linear objective function:
- maximize
- where is known and is unknown variable
- Subject to linear equality or inequality constraints:
- where and are known
- Where can only take integer values
In other words, it is a method to find the optimal solution (i.e. the best assignment of unknown variables such as 's) that maximizes the objective function while meeting a list of requirements expressed as linear equality or inequality relationships.
The strength of ILP is in its joint inference. Instead of making local, isolated assignment of each , it makes joint assignments of all 's at the same time; respecting the global constraints while optimizing the objective function given.
ILP is known to be NP-hard. However, there are many off-the-shelf solvers, both commercial and non commercial, that are available. One such solver is SCIP, which is currently the fastest non commercial mixed integer programming solver.
Procedure
Input:
- The linear objective function
- The linear constraints
Output:
- The assignment of unknown variables that optimizes the objective function and is consistent with the constraints
References / Links
- Wikipedia article on Integer Programming - [1]