Difference between revisions of "10-601 Introduction to Probability"

From Cohen Courses
Jump to navigationJump to search
Line 1: Line 1:
This a lecture used in the [[Syllabus for Machine Learning 10-601]]
+
This a lecture used in the [[Syllabus for Machine Learning 10-601 in Fall 2014]]
  
 
=== Slides ===
 
=== Slides ===

Revision as of 16:32, 21 July 2014

This a lecture used in the Syllabus for Machine Learning 10-601 in Fall 2014

Slides

Readings

  • Mitchell Chap 1,2; 6.1-6.3.

What You Should Know Afterward

You should know the definitions of the following, and be able to use them to solve problems:

  • Random variables and events
  • The Axioms of Probability
  • Independence, binomials, multinomials
  • Conditional probabilities
  • Bayes Rule
  • MLE’s, smoothing, and MAPs
  • The joint distribution
  • Inference
  • Density estimation and classification
  • Naïve Bayes density estimators and classifiers
  • Conditional independence