Difference between revisions of "Text summarization"

From Cohen Courses
Jump to navigationJump to search
Line 5: Line 5:
 
== Common Approaches ==
 
== Common Approaches ==
  
Some common approaches to text summarization include the following:
+
Common approaches to text summarization can typically be broken down into one of the following categories:
  
 
* '''Extraction''', extracts most important information (sentences or paragraphs) from original text and copies them to make summary
 
* '''Extraction''', extracts most important information (sentences or paragraphs) from original text and copies them to make summary

Revision as of 14:58, 30 September 2010

Summary

Text Summarization (also known as summarization, and automatic summarization) is a natural language processing task which focuses on creating shortened versions of texts with computer algorithms/software that retain the important points of the original piece of text.

Common Approaches

Common approaches to text summarization can typically be broken down into one of the following categories:

  • Extraction, extracts most important information (sentences or paragraphs) from original text and copies them to make summary
  • Abstraction, paraphrases sections in the original text and relies on language generation to make the summaries coherent

Challenges / Issues

Some major challenges in text summarization

Example Systems

References / Links

  • A bit outdated website with some references related to text summarization - [1]
  • Wikipedia article on automatic summarization - [2]