Difference between revisions of "Entropy Minimization for Semi-supervised Learning"
From Cohen Courses
Jump to navigationJump to searchPastStudents (talk | contribs) |
PastStudents (talk | contribs) |
||
Line 16: | Line 16: | ||
<math> | <math> | ||
− | C(\theta, \lambda; L_{n}) = L(\theta; \mathcal{L}_{n}) - \lambda H(Y|X,Z; \mathcal{L}_{n}) | + | C(\theta, \lambda; L_{n}) = L(\theta; \mathcal{L}_{n}) - \lambda H(Y|X,Z; \mathcal{L}_{n}) \\ |
= \sum^{n}_{i=1} \text{log}(\sum^{K}_{k=1} z_{ik}P(Y^{i}=w_{k}|X^{i})) | = \sum^{n}_{i=1} \text{log}(\sum^{K}_{k=1} z_{ik}P(Y^{i}=w_{k}|X^{i})) | ||
</math> | </math> |
Revision as of 20:28, 8 October 2010
Minimum entropy regularization can be applied to any model of posterior distribution.
The learning set is denoted , where : If is labeled as , then and for ; if is unlabeled, then for .
The conditional entropy of class labels conditioned on the observed variables:
The posterior distribution is defined as
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(\theta, \lambda; L_{n}) = L(\theta; \mathcal{L}_{n}) - \lambda H(Y|X,Z; \mathcal{L}_{n}) \\ = \sum^{n}_{i=1} \text{log}(\sum^{K}_{k=1} z_{ik}P(Y^{i}=w_{k}|X^{i})) }