Difference between revisions of "Attribute Extraction"
From Cohen Courses
Jump to navigationJump to searchPastStudents (talk | contribs) |
PastStudents (talk | contribs) |
||
Line 1: | Line 1: | ||
== Summary == | == Summary == | ||
− | Attribute Extraction is a [[category::problem]] in the field of information extraction that focuses on identifying properties/features that describe a named entity. | + | Attribute Extraction is a [[category::problem]] in the field of information extraction that focuses on identifying properties/features that describe a named entity. Performing attribute extract is often used in disambiguating person names, extracting encylopedic knowledge, and in improving question answering. |
== Common Approaches == | == Common Approaches == |
Revision as of 18:48, 30 November 2010
Summary
Attribute Extraction is a problem in the field of information extraction that focuses on identifying properties/features that describe a named entity. Performing attribute extract is often used in disambiguating person names, extracting encylopedic knowledge, and in improving question answering.
Common Approaches
Some approaches to Attribute Extraction include:
- Template/Pattern-Learning: Learn template contextual patterns using seed-based bootstrapping
- Position Based: Basing predictions on absolute and relative ordering of where the attribute values typically appear in documents.
- Transitivity-Based: Using transitivity of attributes across co-occuring entities. Co-occuring entities, such as people mentioned in a given person's biography page, tend to have similar attributes.
- Latent-Based: Detect attributes that may not directly be mentioned in an article based on a topic-model.
Challenges / Issues
Some challenges in Attribute Extraction include ...