Difference between revisions of "Melia et al AISTATS 2001"
From Cohen Courses
Jump to navigationJump to searchLine 12: | Line 12: | ||
<math> | <math> | ||
NCut(A, \overline{A}) = \left( \frac{1}{Vol(A)} + \frac{1}{vol(\overline{A})}\right) \sum_{i \in A; j \in \overline{A}} S_{ij}\\ | NCut(A, \overline{A}) = \left( \frac{1}{Vol(A)} + \frac{1}{vol(\overline{A})}\right) \sum_{i \in A; j \in \overline{A}} S_{ij}\\ | ||
− | + | ||
+ | |||
+ | |||
</math> | </math> | ||
== Related papers == | == Related papers == |
Revision as of 12:57, 4 February 2011
Citation
Marina Melia and Jianbo Shi. 2001. A Random Walks View of Spectral Segmentation. In AISTATS 2001.
Online version
Available on Marina Melia's Website
Summary
This paper gives a general theoretical interpretation of a wide variety of spectral methods. The authors first present the general framework of normalized cuts. We assume we are given an index set and similarity matrix where entry represents a similarity between item and item . We then seek a partition of into two sets . Minimizing the following criteria: Failed to parse (syntax error): {\displaystyle NCut(A, \overline{A}) = \left( \frac{1}{Vol(A)} + \frac{1}{vol(\overline{A})}\right) \sum_{i \in A; j \in \overline{A}} S_{ij}\\ }