Difference between revisions of "Turney, ACL 2002"

From Cohen Courses
Jump to navigationJump to search
Line 9: Line 9:
 
== Summary ==
 
== Summary ==
  
This is an early and influential [[Category::paper]] presenting an unsupervised approach to [[AddressesProblem::review classification]]. The basic ideas are:
+
This is an early and influential [[Category::paper]] presenting an unsupervised approach to [[AddressesProblem::review classification]]. There are three basic ideas introduced here.
  
* To use patterns of part of speech tags to pick out phrases that are likely to be meaningful and unambiguous with respect to semantic orientation (e.g. ADJ NOUN might pick out "good service" or "delicious desserts").  
+
One key idea is to score the polarity of a review based on the total polarity of the phrases in it.
  
* To use [[UsesMethod::pointwise mutual information]] (PMI) to score the similarity of each phrase in a review with the two words "excellent" or "poor", and give an overall score for the polarity to each phrase based on the difference of its PMI with "excellent" to the PMI with "poor".  A large corpus was used here (the Web, via queries to a search engine).
+
A second idea is to use patterns of part of speech tags to pick out phrases that are likely to be meaningful and unambiguous with respect to semantic orientation (e.g. ADJ NOUN might pick out "good service" or "delicious desserts").   
  
* To score the polarity of a review based on the total polarity of the phrases in it.
+
Finally, these potentially-meaningful phrases are then scored using [[UsesMethod::pointwise mutual information]] (PMI) to seed words on known polarity.  Specifically, Turney uses PMI to compare each phrase to the words "excellent" or "poor", and then uses these distances to give an overall score for the polarity to each phrase, based on the difference of its PMI with "excellent" to the PMI with "poor".  A very large corpus was used here (the Web, via queries to a search engine), which appears to be important in making this simple technique work.
  
 
== Brief description of the method ==
 
== Brief description of the method ==

Revision as of 12:01, 31 August 2011

Citation

Turney, P. D. 2002. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 417–424.

Online version

ACL anthology

Summary

This is an early and influential paper presenting an unsupervised approach to review classification. There are three basic ideas introduced here.

One key idea is to score the polarity of a review based on the total polarity of the phrases in it.

A second idea is to use patterns of part of speech tags to pick out phrases that are likely to be meaningful and unambiguous with respect to semantic orientation (e.g. ADJ NOUN might pick out "good service" or "delicious desserts").

Finally, these potentially-meaningful phrases are then scored using pointwise mutual information (PMI) to seed words on known polarity. Specifically, Turney uses PMI to compare each phrase to the words "excellent" or "poor", and then uses these distances to give an overall score for the polarity to each phrase, based on the difference of its PMI with "excellent" to the PMI with "poor". A very large corpus was used here (the Web, via queries to a search engine), which appears to be important in making this simple technique work.

Brief description of the method

The algorithm takes a written review as an input. First it assigns a POS tag to each word in the review to identify adjective or adverb phrases in the input review. They have used PMI-IR algorithm to estimate the semantic orientation of a phrase. The Pointwise Mutual Information (PMI) between two words and is defined as follow:

where is the probability that and co-occur. They have defined the semantic orientation of a phrase as follow:

We can modify the above definition to obtain the following formula:

where operator NEAR means that the two phrases should be appeared close to each other in the corpus. Using the above formula they have calculated the average semantic orientation for a review. They have shown that the value of average semantic orientation for phrases in the items that are tagged as "recommended" by the users are usually positive and those that are tagged as "not recommended" are usually negative.

Experimental Result

This approach was fairly successful on a range of review-classification tasks: it achieved accuracy of between 65% and 85% in predicting an author-assigned "recommended" flag for Epinions ratings for eight diverse products, ranging from cars to movies. Many later writers used several key ideas from the paper, including: treating polarity prediction as a document-classification problem; classifying documents based on likely-to-be-informative phrases; and using unsupervised or semi-supervised learning methods.

Related papers

The widely cited Pang et al EMNLP 2002 paper was influenced by this paper - but considers supervised learning techniques. The choice of movie reviews as the domain was suggested by the (relatively) poor performance of Turney's method on movies.

An interesting follow-up paper is Turney and Littman, TOIS 2003 which focuses on evaluation of the technique of using PMI for predicting the semantic orientation of words.