Difference between revisions of "Integer Linear Programming"

From Cohen Courses
Jump to navigationJump to search
Line 17: Line 17:
 
== Procedure ==
 
== Procedure ==
 
'''Input''':  
 
'''Input''':  
* The objective function
+
* The linear objective function
* The constraints
+
* The linear constraints
  
 
'''Output''':
 
'''Output''':

Revision as of 01:44, 28 September 2011

Summary

Integer Linear Programming (ILP) is a method for:

  • optimizing a linear objective function:
maximize
where is known and is unknown variable
  • subject to linear equality or inequality constraints:
where and are known
  • and where can only take integer values

In other words, it is a method to find the optimal solution (i.e. the best assignment of unknown variables such as 's) that maximizes the objective function while meeting a list of requirements expressed as linear equality or inequality relationships.

Procedure

Input:

  • The linear objective function
  • The linear constraints

Output:

  • The assignment of unknown variables that optimizes the objective function and is consistent with the constraints

References / Links

  • Leo Brieman. Bagging Predictors. Machine Learning, 24, 123–140 (1996). - [1]
  • Wikipedia article on Bagging - [2]

Relevant Papers