Difference between revisions of "Comparison Andreevskaia et al ICWSM 2007 and MHurst KNigam RetrievingTopicalSentimentsFromOnlineDocumentColeections"
From Cohen Courses
Jump to navigationJump to searchLine 5: | Line 5: | ||
== Problem == | == Problem == | ||
− | Andreevskaia_2007 perform [Sentiment_analysis | sentiment classification](binary and ternary) on a per sentence basis. For their analysis they study the differences between "personal diary" and "journalistic" styled web blogs using a manually annotated data. They evaluate their performance on two systems, a sentiment word counts based system and an improved version using valence shifters. | + | Andreevskaia_2007 perform [[Sentiment_analysis | sentiment classification]](binary and ternary) on a per sentence basis. For their analysis they study the differences between "personal diary" and "journalistic" styled web blogs using a manually annotated data. They evaluate their performance on two systems, a sentiment word counts based system and an improved version using valence shifters. |
Hurst_Nigam_2004 had previously performed a similar task of identifying polarity on a per sentence basis to discover polar sentences about a topic. Hurst and Nigam had used a linear classifier ([Winnow_Algorithm]) for topic classification and a rule based grammatical model for polarity identification. | Hurst_Nigam_2004 had previously performed a similar task of identifying polarity on a per sentence basis to discover polar sentences about a topic. Hurst and Nigam had used a linear classifier ([Winnow_Algorithm]) for topic classification and a rule based grammatical model for polarity identification. |
Revision as of 07:50, 6 November 2012
Contents
Papers
- All Blogs are Not Made Equal: Exploring Genre Differences in Sentiment Tagging of Blogs, Alina Andreevskaia, Sabine Bergler, and Monica Urseanu, ICWSM 2007
- Hurst, Matthew F., and Kamal Nigam. "Retrieving topical sentiments from online document collections." Proceedings of SPIE. Vol. 5296. 2004.
Problem
Andreevskaia_2007 perform sentiment classification(binary and ternary) on a per sentence basis. For their analysis they study the differences between "personal diary" and "journalistic" styled web blogs using a manually annotated data. They evaluate their performance on two systems, a sentiment word counts based system and an improved version using valence shifters.
Hurst_Nigam_2004 had previously performed a similar task of identifying polarity on a per sentence basis to discover polar sentences about a topic. Hurst and Nigam had used a linear classifier ([Winnow_Algorithm]) for topic classification and a rule based grammatical model for polarity identification.