Difference between revisions of "Comparison Andreevskaia et al ICWSM 2007 and MHurst KNigam RetrievingTopicalSentimentsFromOnlineDocumentColeections"

From Cohen Courses
Jump to navigationJump to search
Line 7: Line 7:
 
Andreevskaia_2007 perform [[Sentiment_analysis | sentiment classification]](binary and ternary) on a per sentence basis. For their analysis they study the differences between "personal diary" and "journalistic" styled web blogs using a manually annotated data. They evaluate their performance on two systems, a sentiment word counts based system and an improved version using valence shifters.
 
Andreevskaia_2007 perform [[Sentiment_analysis | sentiment classification]](binary and ternary) on a per sentence basis. For their analysis they study the differences between "personal diary" and "journalistic" styled web blogs using a manually annotated data. They evaluate their performance on two systems, a sentiment word counts based system and an improved version using valence shifters.
  
Hurst_Nigam_2004 had previously performed a similar task of identifying polarity on a per sentence basis to discover polar sentences about a topic. Hurst and Nigam had used a linear classifier ([Winnow_Algorithm]) for topic classification and a rule based grammatical model for polarity identification.
+
Hurst_Nigam_2004 had previously performed a similar task of identifying [[Polarity_Classification | polarity]] on a per sentence basis to discover polar sentences about a topic. Hurst and Nigam had used a linear classifier ([Winnow_Algorithm]) for topic classification and a rule based grammatical model for polarity identification.
  
 
== Big Idea ==
 
== Big Idea ==

Revision as of 07:51, 6 November 2012

Papers

  1. All Blogs are Not Made Equal: Exploring Genre Differences in Sentiment Tagging of Blogs, Alina Andreevskaia, Sabine Bergler, and Monica Urseanu, ICWSM 2007
  2. Hurst, Matthew F., and Kamal Nigam. "Retrieving topical sentiments from online document collections." Proceedings of SPIE. Vol. 5296. 2004.

Problem

Andreevskaia_2007 perform sentiment classification(binary and ternary) on a per sentence basis. For their analysis they study the differences between "personal diary" and "journalistic" styled web blogs using a manually annotated data. They evaluate their performance on two systems, a sentiment word counts based system and an improved version using valence shifters.

Hurst_Nigam_2004 had previously performed a similar task of identifying polarity on a per sentence basis to discover polar sentences about a topic. Hurst and Nigam had used a linear classifier ([Winnow_Algorithm]) for topic classification and a rule based grammatical model for polarity identification.

Big Idea

Method

Dataset Used

Other Discussions

Other Questions