Difference between revisions of "10-601 Logistic Regression"

From Cohen Courses
Jump to navigationJump to search
Line 16: Line 16:
 
* Why regularization matters.
 
* Why regularization matters.
 
* How logistic regression and naive Bayes are similar and different.
 
* How logistic regression and naive Bayes are similar and different.
 +
* The difference between a discriminative and a generative classifier.
 
* What "overfitting" is, and why optimizing performance on a training set does not ''necessarily'' lead to good performance on a test set.
 
* What "overfitting" is, and why optimizing performance on a training set does not ''necessarily'' lead to good performance on a test set.

Revision as of 11:48, 24 September 2013

This a lecture used in the Syllabus for Machine Learning 10-601

Slides

Readings

What You Should Know Afterward

  • How to implement logistic regression.
  • Why regularization matters.
  • How logistic regression and naive Bayes are similar and different.
  • The difference between a discriminative and a generative classifier.
  • What "overfitting" is, and why optimizing performance on a training set does not necessarily lead to good performance on a test set.