Difference between revisions of "10-601B SSL"
From Cohen Courses
Jump to navigationJump to search (Created page with "This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016 === Slides === * ... === Readings === * This is not covered in Mitchell. An optional r...") |
(→Slides) |
||
Line 3: | Line 3: | ||
=== Slides === | === Slides === | ||
− | * ... | + | * [http://www.cs.cmu.edu/~wcohen/10-601/ssl.pdf PDF], [http://www.cs.cmu.edu/~wcohen/10-601/ssl.pptx Powerpoint]. |
=== Readings === | === Readings === |
Revision as of 09:18, 16 March 2016
This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016
Slides
Readings
- This is not covered in Mitchell. An optional reading is an excellent short textbook by Jerry Zhu: Introduction to Semi-Supervised Learning Synthesis Lectures on Artificial Intelligence and Machine Learning, Chapters 1-3 + 5. This is a free PDF if you're on the CMU network.
Summary
You should know:
- What semi-supervised learning is - i.e., what the inputs and outputs are.
- How K-means and mixture-models can be extended to perform SSL.
- The difference between transductive and inductive semi-supervised learning.
- What graph-based SSL is.
- The definition/implementation of the harmonic function SSL method (variously called wvRN, HF, co-EM, ...)