Difference between revisions of "Xuehan Xiong's project abstract"

From Cohen Courses
Jump to navigationJump to search
Line 30: Line 30:
 
This dataset [http://www-2.cs.cmu.edu/~webkb/]
 
This dataset [http://www-2.cs.cmu.edu/~webkb/]
 
contains web pages from 4 universities, labeled with whether they are professor, student, project, or other pages.
 
contains web pages from 4 universities, labeled with whether they are professor, student, project, or other pages.
 +
 +
3. The same experiments that W. Cohen did in his stacking paper. This depends on the availability of the data.
  
 
== Techniques ==  
 
== Techniques ==  

Revision as of 23:52, 7 October 2010

Team

Xuehan Xiong. [xxiong@andrew.cmu.edu]

Motivation

In lots of NLP tasks, given a limited amount of labeled data semi-supervised learning is able to take advantage of the "cheap" unlabeled data and outperform the same supervised techniques. Stacked Sequential Learning [] also shows its advantage over probabilistic graphical models on various NLP tasks. However, little work has been done to extend stacking into a semi-supervised framework.

Goal

1. Extend stacked sequential learning to a semi-supervised base.

2. Compare this algorithm with other structural semi-supervised algorithms.

3. Compare this approach with the original stacking.

4. Analyze the reason why it performs better or worse than supervised stacking.

Experiments

To better understand the pros and cons of my algorithm, I will run different the algorithms over different tasks if time allows. The experiments to do as follows:

1. I will evaluate my algorithm on the task of Named Entity Recognition for emails. I will use a public available email datasets. [1]

2. Also I will run my algorithm on another popular task -- web page classification. Co-training has been shown to be very effective on this task. It would be interesting to compare my algorithm with co-training. This dataset [2] contains web pages from 4 universities, labeled with whether they are professor, student, project, or other pages.

3. The same experiments that W. Cohen did in his stacking paper. This depends on the availability of the data.

Techniques

First try out some basic semi-supervised learning algorithms as the base learner of stacking, such as K.Nigam, et al. [3], Y. Grandvalet [4], and K. P. Bennett [5]. Then, based on the outcome I will try other ways to improve the algorithm.