Difference between revisions of "Attribute Extraction"
From Cohen Courses
Jump to navigationJump to searchPastStudents (talk | contribs) |
PastStudents (talk | contribs) |
||
Line 6: | Line 6: | ||
Some approaches to Attribute Extraction include: | Some approaches to Attribute Extraction include: | ||
− | * Template/Pattern-Learning: Learn template contextual patterns using seed-based bootstrapping | + | * '''Template/Pattern-Learning''': Learn template contextual patterns using seed-based bootstrapping |
− | * Position Based: Basing predictions on absolute and relative ordering of where the attribute values typically appear in documents. | + | * '''Position Based''': Basing predictions on absolute and relative ordering of where the attribute values typically appear in documents. |
− | * Transitivity-Based: Using transitivity of attributes across co-occuring entities. Co-occuring entities, such as people mentioned in a given person's biography page, tend to have similar attributes. | + | * '''Transitivity-Based''': Using transitivity of attributes across co-occuring entities. Co-occuring entities, such as people mentioned in a given person's biography page, tend to have similar attributes. |
− | * Latent-Based: Detect attributes that may not directly be mentioned in an article based on a topic-model. | + | * '''Latent-Based''': Detect attributes that may not directly be mentioned in an article based on a topic-model. |
− | * | + | * |
== Challenges / Issues == | == Challenges / Issues == |
Revision as of 18:44, 30 November 2010
Summary
Attribute Extraction is a problem in the field of information extraction that focuses on identifying properties/features that describe a named entity.
Common Approaches
Some approaches to Attribute Extraction include:
- Template/Pattern-Learning: Learn template contextual patterns using seed-based bootstrapping
- Position Based: Basing predictions on absolute and relative ordering of where the attribute values typically appear in documents.
- Transitivity-Based: Using transitivity of attributes across co-occuring entities. Co-occuring entities, such as people mentioned in a given person's biography page, tend to have similar attributes.
- Latent-Based: Detect attributes that may not directly be mentioned in an article based on a topic-model.
Challenges / Issues
Some challenges in Attribute Extraction include ...