Difference between revisions of "Gabrilovich and Markovitch IJCAI 2007"

From Cohen Courses
Jump to navigationJump to search
Line 17: Line 17:
 
[[File:semanticRelatedness_Wikipedia.png]]
 
[[File:semanticRelatedness_Wikipedia.png]]
  
The methodology introduced shows substantial improvements over other ones as below.
+
The methodology introduced shows substantial improvements over other ones as below. It gives 0.75 of correlation with humans in system performance.
  
 
[[File:semanticRelatedness_result.png]]
 
[[File:semanticRelatedness_result.png]]

Revision as of 20:50, 30 November 2010

Citation

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. IJCAI'07 Proceedings of the 20th international joint conference on Artifical intelligence, 1606-1611.

Online version

AAAI

Summary

The paper presents a system for computing Semantic Relatedness.

The dataset used for evaluation is WordSimilarity-353 collection, and a collection 50 documents from the Australian Broadcasting Corporation's news mail service. WordSimilarity-353 collection has 353 pairs of words, and the other collection has 1,225 pairs of documents. Both have human judgments as gold standards.

They propose a method, called Explicit Semantic Analysis, which represents the meaning of any text in terms of natural concepts defined on large-scale knowledge repository such as Wikipedia [1] and Open Directory Project (ODP) [2] . After building a semantic interpreter that maps fragments of natural language text into a weighted sequence of Wikipedia concepts ordered by their relevance to the input. Then, input texts are represented as weighted vectors of concepts. Then, the semantic relatedness is calculated comparing their vectors, for example, using the cosine metric.The method is described in the picture below.

SemanticRelatedness Wikipedia.png

The methodology introduced shows substantial improvements over other ones as below. It gives 0.75 of correlation with humans in system performance.

SemanticRelatedness result.png

Key Contribution

The algorithm suggested in this paper can compute relatedness both between words and texts using the same method without any change while some other methods on Semantic Relatedness target either words or texts. In addition, it is intuitive and simple, and shows good performance.