Difference between revisions of "Daume and Marcu 2005 Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction"

From Cohen Courses
Jump to navigationJump to search
Line 15: Line 15:
 
[[File:LaSO Generic Search.png]]
 
[[File:LaSO Generic Search.png]]
  
The ''enqueue'' function puts the nodes onto the queue in some order.  Depending on the order that the ''enqueue'' function puts nodes on the queue, you can get depth-first, breadth-first, beam, heuristic, A*, etc search algorithms from standard AI textbooks.  The thing that is different about LaSO is the function ''enqueue''.  It ranks the nodes according to ''g'' which is a linear function of features.  The features can depend on the input ''x'' and the path to the current current node ''n'':
+
The ''enqueue'' function puts the nodes onto the queue in some order.  Depending on the order that the ''enqueue'' function puts nodes on the queue, you can get depth-first, breadth-first, beam, heuristic, A*, etc search algorithms from standard AI textbooks.  In LaSO ''enqueue'' ranks nodes according to a function ''g'' which is a linear in the set of features.  The features can depend on the input ''x'' and the path to the current current node ''n'':
  
 
<math>g=\mathbf{\omega}^\top \mathbf{\Phi}(x,n)</math>
 
<math>g=\mathbf{\omega}^\top \mathbf{\Phi}(x,n)</math>

Revision as of 03:44, 1 October 2011

Citation and Link

Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction

Summary

The authors present the Learning as Search Optimization (LaSO) framework. The algorithm is basically SEARN but analyzed differently (and also ~24 pages shorter).

LaSO attempts to combine the learning of the model with the search that occurs during decoding. Instead of learning the model and then doing a search during decoding, LaSO attempts to directly learn to search.

Method

The generic search (decoding) algorithm is shown below:

LaSO Generic Search.png

The enqueue function puts the nodes onto the queue in some order. Depending on the order that the enqueue function puts nodes on the queue, you can get depth-first, breadth-first, beam, heuristic, A*, etc search algorithms from standard AI textbooks. In LaSO enqueue ranks nodes according to a function g which is a linear in the set of features. The features can depend on the input x and the path to the current current node n:

LaSO works by learning the enqueue function from the training examples. The learning algorithm is shown below:

LaSO Algorithm.png

Nodes for which there exists a path to the optimal goal are called "y-good" nodes. The siblings function denotes the set of nodes at the same depth as current node that can reach the goal (i.e. are y-good). The algorithm may have to backtrack to find them if they are not currently in the queue.

If the search makes a mistake, the weights are updated with the function update. The two functions they propose in the paper are the perceptron update (shown below) and a variant of the approximate large margin update (ALMA).

LaSO Perceptron Update.png

Experimental Result

Related Papers

In progress by User:Jmflanig