Koo and Collins ACL 2010

From Cohen Courses
Revision as of 21:53, 25 November 2011 by Aanavas (talk | contribs) (→‎Summary)
Jump to navigationJump to search

Citation

Koo, T. and Collins, M. 2010. Efficient Third-Order Dependency Parsers. In Proceedings of ACL, pp. 1-11. Association for Computational Linguistics.

Online version

ACL

Summary

This paper presents a higher-order dependency parser that can evaluate substructures containing three dependencies, using both sibling-style and grandchild-style interactions. The algorithms presented require only time and were evaluated on the Penn Treebank and the Prague Dependency Treebank. The implementation code was publicly released [1].

Background

Dependency parsing is defined as a search for the highest-scoring analysis of a sentence :

where is the set of all trees compatible with and evaluates the event that tree is the analysis of . Directly solving the equation is unfeasible because the number of possible trees grow exponentially with the length of the sentence. A common strategy is to factor each dependency tree into small parts which can be scored individually, then:

The order of a part is defined according to the number of dependencies it contains, a terminology used in previous parsing algorithms, such as first-order factorization and second-order sibling factorization. The factorizations in this new third-order parser uses the following parts:

Dpo3-01.png

Description of new method

The overall method augments each span with a grandparent index. The concept of spans comes from the Eisner algorithm structures, where complete spans consist of a head-word and its descendants on one side, and incomplete spans consist of a dependency and the region between the head and modifier. Based on this, the paper introduces three parsing algorithms based on three different models.

Model 0: all grandchildren

This model factors each dependency tree into a set of grandchild parts (pairs of dependencies connected head to tail). Formally, a triple of indices where and are dependencies. Both complete and incomplete spans are augmented with grand-parent indices to produced g-spans. The next figure describes complete and incomplete g-spans and provides a graphical specification of the dynamic-programming algorithm:

Dpo3-02.png

The algorithm is similar to the first-order parser, but every recursive construction sets the grandparent indices of the smaller g-spans. Model 0 can be parsed by adapting standard top-down or bottom-up chart parsers. The following pseudocode sketches a bottom-up chart parser for this model:

Dpo3-02.png

The complexity of the algorithm is time and space.

Experimental results

Bla bla.

Related papers

Bla bla.