Tackstrom and McDonald, ECIR 2011. Discovering fine-grained sentiment with latent variable structured prediction models
Contents
Citation
O. Tackstrom and R. McDonald. 2011. Discovering fine-grained sentiment with latent variable structured prediction models. In Proceedings of ECIR-2011, pp 764–773, Dublin, Ireland.
Online Version
Discovering fine-grained sentiment with latent variable structured prediction models
Summary
This paper investigates the use of latent variable structured prediction models for fine-grained sentiment analysis in the common situation where only coarse-grained supervision is available. The authors show how sentence level sentiment labels can be effectively learned from document-level supervision using hidden conditional random fields (HCRFs). The authors show improvements over both lexicon and existing machine learning based approaches. They focus on sentence level sentiment analysis.
Method
The authors observe that there is a lot of data in the form of coarse-level annotations available on the web pertaining to consumer reviews of products, movies etc. However, fine-grained labeled data for sentiment is difficult to obtain across domains for supervised learning. Hence, the authors model finer-level information as latent variables making use of the freely available coarse level annotations, using hierarchical graphical models such as HCRFs.
Based on the observations about positive and negative reviews in documents, the authors model sentence level classifications as:
- Correlated with the observed document label and,
- Flexible enough to disagree when contextual evidence suggests otherwise.
Approach
They start with the supervised fine-to-coarse sentiment model described in [[RelatedPaper::McDonald et al., 2007].
Let be a document consisting of sentences, Let the document level sentiment and sentence level sentiment be denoted by be the random variables that include the document level sentiment, , and the sequence of sentence level sentiment,
All random variables take values in for positive, negative and neutral sentiment, respectively. The authors hypothesize that there is a sequential relationship between sentence sentiment and that the document sentiment is influenced by all sentences (and vice versa). A first order Markov property is assumed, according to which each sentence variable, is independent of all other variables, conditioned on the document variable and its adjacent sentences, .