Hu and Liu, AAAI 2004

From Cohen Courses
Revision as of 05:37, 27 September 2012 by Sushantk (talk | contribs)
Jump to navigationJump to search

This is a summary of research paper as part of Social Media Analysis 10-802, Fall 2012.

Citation

M. Hu and B. Liu. Mining Opinion Features in Customer Reviews. In Proceedings of Nineteenth National Conference on Artificial Intelligence. 2004.

Online Version

Direct PDF link

Abstract from the paper

It is a common practice that merchants selling products on the Web ask their customers to review the products and associated services. As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. For a popular product, the number of reviews can be in hundreds. This makes it difficult for a potential customer to read them in order to make a decision on whether to buy the product. In this project, we aim to summarize all the customer reviews of a product. This summarization task is different from traditional text summarization because we are only interested in the specific features of the product that customers have opinions on and also whether the opinions are positive or negative. We do not summarize the reviews by selecting or rewriting a subset of the original sentences from the reviews to capture their main points as in the classic text summarization. In this paper, we only focus on mining opinion/product features that the reviewers have commented on. A number of techniques are presented to mine such features. Our experimental results show that these techniques are highly effective.

Summary

This paper proposes some techniques for feature-based opinion summarization of customer reviews for various products sold on e-commerce websites such as Amazon.com. They propose to perform this task in two steps -

  1. Identifying the product features (like size, picture quality etc for a camera) and listing them based on their frequency of occurrence and opinion expressed by customers.
  2. For each feature, identifying customer reviews that express positive or negative opinion.

In this paper, they mainly focus on the first task - finding the product features for which customers have expressed some opinion. They also mention that their approach is different from traditional text summarization as they provide a more structured summary of reviews and also limit the summary to the opinions expressed about product features.

It lists some of the common problems mentioned in getting list of product features from manufacturers/sellers -

  • Manufacturer/Seller may not be able to provide an exhaustive list of features for the entire catalog.
  • Manufacturer/Seller and customer/reviewer may use different terms for the same features and can lead to ambiguity.
  • Manufacturer/Seller may not reveal all the product features.
  • Customer/Seller may express opinion about some features which are missing in a product.


Evaluation

Related Papers

Study Plan