Chiang 2005
From Cohen Courses
Jump to navigationJump to searchCitation
Chiang, D. 2005. A Hierarchical Phrase-Based Model for Statistical Machine Translation. In Proceedings of the 43rd Annual Meeting of the ACL, pp. 263–270, Ann Arbor. Association for Computational Linguistics.
Online version
Information Sciences Institute, University of Southern California
Summary
This paper presents a statistical phrase-based machine translation model that uses hierarchical phrases (phrases that contain subphrases). The model is formally syntax-based because it uses Synchronous Context-Free Grammars but not linguistically syntax-based because the grammar is learned from a parallel text without using any linguistic annotations or assumptions. Using BLEU as a metric, the model is shown to outperform previous state-of-the-art phrase-based systems.