Forest Fire Model
A forest-fire model is any of a number of dynamical systems displaying self-organized criticality. Note, however, that according to Pruessner et al. (2002, 2004) the forest-fire model does not behave critically on very large, i.e. physically relevant scales. Early versions go back to Henley (1989) and Drossel and Schwabl (1992). The model is defined as a cellular automaton on a grid with Ld cells. L is the sidelength of the grid and d is its dimension. A cell can be empty, occupied by a tree, or burning. The model of Drossel and Schwabl (1992) is defined by four rules which are executed simultaneously:
- A burning cell turns into an empty cell
- A tree will burn if at least one neighbor is burning
- A tree ignites with probability f even if no neighbor is burning
- An empty space fills with a tree with probability p
The controlling parameter of the model is p/f which gives the average number of trees planted between two lightning strikes (see Schenk et al. (1996) and Grassberger (1993)). In order to exhibit a fractal frequency-size distribution of clusters a double separation of time scales is necessary
where Tsmax is the burn time of the largest cluster. The scaling behavior is not simple, however ( Grassberger 1993,2002 and Pruessner et al. 2002,2004).