Class meeting for 10-605 Randomized
From Cohen Courses
This is one of the class meetings on the schedule for the course Machine Learning with Large Datasets 10-605 in Fall_2015.
Slides
Comment: I'm going to start off with a few slides related to the upcoming assignment on MF with Spark.
Supplement:
Optional Readings
- Randomized Algorithms and NLP: Using Locality Sensitive Hash Functions for High Speed Noun Clustering Deepak Ravichandran, Patrick Pantel, and Eduard Hovy
- Online Generation of Locality Sensitive Hash Signatures. Benjamin Van Durme and Ashwin Lall. ACL Short. 2010
- Sketch Algorithms for Estimating Point Queries in NLP. Amit Goyal, Hal Daume III, and Graham Cormode, EMNLP 2012]
Key things to remember
- The API for the randomized methods we studied: Bloom filters, LSH, CM sketches
- What are the key tradeoffs associated with these methods, in terms of space/time efficiency.
- What guarantees are possible, and how space grows as you require more accuracy.
- Which algorithms allow one to combine sketches easily.