10-601B SSL

From Cohen Courses
Revision as of 09:26, 12 January 2016 by Wcohen (talk | contribs) (Created page with "This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016 === Slides === * ... === Readings === * This is not covered in Mitchell. An optional r...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016

Slides

  • ...

Readings

Summary

You should know:

  • What semi-supervised learning is - i.e., what the inputs and outputs are.
  • How K-means and mixture-models can be extended to perform SSL.
  • The difference between transductive and inductive semi-supervised learning.
  • What graph-based SSL is.
  • The definition/implementation of the harmonic function SSL method (variously called wvRN, HF, co-EM, ...)