10-601 Introduction to Probability
From Cohen Courses
Revision as of 09:32, 16 September 2014 by Wcohen (talk | contribs) (→What You Should Know Afterward)
This a lecture used in the Syllabus for Machine Learning 10-601 in Fall 2014
Slides
- Slides in Powerpoint - William.
- Slides in pdf - Ziv.
Readings
- Mitchell Chap 1,2; 6.1-6.3.
What You Should Know Afterward
You should know the definitions of the following, and be able to use them to solve problems:
- Random variables and events
- The Axioms of Probability
- Independence, binomials, multinomials
- Expectation and variance of a distribution
- Conditional probabilities
- Bayes Rule
- MLE’s, smoothing, and MAPs
- The joint distribution
- How to do inference using the joint distribution
- Density estimation and classification