10-601 Deep Learning 1

From Cohen Courses
Jump to navigationJump to search

This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016

Slides

Readings

This area is moving very fast and the textbooks are not up-to-date. Some recommended readings:

I also used some on-line visualizations in the materials for the lecture, especially the part on ConvNets.

For more detail, look at the MIT Press book (in preparation) from Bengio

Things to remember

  • The underlying reasons deep networks are hard to train
    • Exploding/vanishing gradients
    • Saturation
  • The importance of key recent advances in neural networks:
    • Matrix operations and GPU training
    • ReLU, cross-entropy, softmax
  • Convolutional networks
    • 2-d convolution
    • How to construct a convolution layer
    • Architecture of CNN: convolution/downsampling pairs