10-601 Matrix Factorization

From Cohen Courses
Revision as of 12:25, 13 April 2016 by Wcohen (talk | contribs) (→‎Summary)
Jump to navigationJump to search

This a lecture used in the Syllabus for Machine Learning 10-601B in Spring 2016

Slides

Readings

Summary

You should know:

  • What loss function and constraints are associated with PCA - i.e., what the "PCA optimization problem" is.
  • How to interpret the low-dimensional embedding of instances, and the "prototypes" produced by PCA and MF techniques.
    • How to interpret the prototypes in the case of dimension reduction for images.