Class meeting for 10-605 Probability Review

From Cohen Courses
Revision as of 16:46, 30 August 2017 by Wcohen (talk | contribs) (→‎Slides)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

This is one of the class meetings on the schedule for the course Machine Learning with Large Datasets 10-605 in Fall 2017.

Slides

Readings for the Class

  • Optional: Mitchell 6.1-6.10

Today's quiz

Things to remember

  • The joint probability distribution
  • Brute-force estimation of a joint distribution
  • Density estimation and how it can be used for classification
  • Naive Bayes and the conditional independence assumption
  • Asymptotic complexity of naive Bayes
  • What are streaming machine learning algorithms: ML algorithms that never load in the data