Denecke and Bernauer ARTIFICIAL INTELLIGENCE IN MEDICINE 2007

From Cohen Courses
Revision as of 17:58, 10 October 2010 by PastStudents (talk | contribs) (Created page with '== Citation == Ciaohua Zhou et al. 2006. Approaches to Text Mining for Clinical Medical Records. In Proceedings of the 2006 ACM symposium on Applied computing, 235-239. == Onli…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Citation

Ciaohua Zhou et al. 2006. Approaches to Text Mining for Clinical Medical Records. In Proceedings of the 2006 ACM symposium on Applied computing, 235-239.

Online version

ACM portal

Summary

The paper presents a MEDical Information Extraction (MedIE) system, which extracts patient information from free-text clinical records.

They divided their extraction job into three tasks below.

  • Extraction of medical terms
  • Relation Extraction
    • In this paper, relation extraction means extraction of associated medical concepts. For example, 'Blood pressure' and '144/90' are associated terms in the sentence, "Blood pressure is 144/90".
  • Text Classification
    • For example, a patient can be classified as a former smoker, a current smoker, or a non-smoker

Their approaches are:

  • An ontology-based approach for extracting medical terms of interest
    • They used Unified Medical Language System (UMLS). About terms that are not defined in UMLS, they predicted categories of some terms using sentence structures.
  • A graph-based approach which uses the parsing result of link-grammar parser for Relation Extraction
    • Notable things in their approach are three. First, they included the processing of negation. Second, when the parser fails, they used a pattern-based approach. Lastly, they replaced multi-word terms with placeholders because the parser did not process the terms.
  • an NLP-based feature extraction method coupled with an ID3-based Decision Tree Learning for Text Classification


This approach was fairly successful mostly showing over 80% of precision and recall. However, the system was tested on the data written by only a clinician, which means that the style of free-text records was consistent. Nevertheless, the research is worth in that they applied various IE techniques to the free-text clinical records, explain about the problems they encountered.

Related papers

An interesting follow-up paper is Denecke and Bernauer AIME 2007 which uses semantic structures to extract medical information.