Proposal 2nd Draft Nitin Yandong Ming Yanbo

From Cohen Courses
Revision as of 18:21, 15 February 2011 by Yandongl (talk | contribs)
Jump to navigationJump to search

Modeling Academic Collaboration and Influence in scholarly literature

Team members

Nitin Agarwal

Yandong Liu

Yanbo Xu

Ming Sun

The Problem

New research papers are growing rapidly, especially in computer science field, making it hard to follow. Instead of wasting time reading all the papers, we want our computers to answer following questions:

  • Who to collaborate with?
  • Which work to cite?
  • Who to review this paper (for conference organizers)?

Essentially, we d like to capture the interactions and relationships between people. For academia, it s mainly about collaboration and citation. There are approaches about content Analysis and/or connectivity Analysis.

Application

Who to collaborate with?

  • Given a professor's name and his/her research topic, we want the computer to list the most possible researchers for him/her to collaborate.
  • This can be stated as
  • In this way, we can recommend a faculty member for you to collaborate with.

Bold text

Related work

Author Topic Model

Author topic.png

Author-Topic model describes such a generative process about how each document is generated:

For each document:

  • Choose an author
  • Choose a topic
  • Choose a word

The result obtained includes the topic distribution per each author, and word distribution per each topic. One possible application suggested by this paper is to find related authors by computing KL-divergence of different author's topic distribution.

Author-Recipient-Topic Model

Author recipient topic.png

For this model authors believe that nodes have different roles like in email data there are senders and receivers and they should be treated differently in the model. Therefore instead of modeling individuals, we model the pair relationship directly. An author and a set of recipients are observed. Topics are now conditioned on (author, recipient) pair.