Gibbs sampling

From Cohen Courses
Revision as of 23:19, 31 March 2011 by Nitina (talk | contribs)
Jump to navigationJump to search

Gibbs sampling is used to sample from the stable joint distribution of two or more random variables when accurate computation of the integral or a marginal is intractable. Usually some variables in this set of random variables are the actual observables and hence there values need not be sampled in the Gibbs sampling iterations. This form of approximate inference method is generally used when doing posterior probability inference in probabilistic graphical models where computation of marginals are intractable.