Daume and Marcu 2005 Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction

From Cohen Courses
Revision as of 03:39, 1 October 2011 by Jmflanig (talk | contribs)
Jump to navigationJump to search

Citation and Link

Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction An alternative formal analysis of Searn.

Summary

The authors present the Learning as Search Optimization (LaSO) framework. The algorithm is basically SEARN but analyzed differently (and also ~24 pages shorter).

LaSO attempts to combine the learning of the model with the search that occurs during decoding. Instead of learning the model and then doing a search during decoding, LaSO attempts to directly learn to search.

Method

The generic search (decoding) algorithm is shown below:

LaSO Generic Search.png

The enqueue function puts the nodes onto the queue in some order. Depending on the order that the enqueue function puts nodes on the queue, you can get depth-first, breadth-first, beam, heuristic, A*, etc search algorithms from standard AI textbooks. The thing that is different about LaSO is the function enqueue. It ranks the nodes according to g which is a linear function of features. The features can depend on the input x and the path to the current current node n:

LaSO works by learning the enqueue function from the training examples. The learning algorithm is shown below:

LaSO Algorithm.png

Nodes for which there exists a path to the optimal goal are called "y-good" nodes. The siblings function denotes the set of nodes at the same depth as current node that can reach the goal (i.e. are y-good). The algorithm may have to backtrack to find them if they are not currently in the queue.

If the search makes a mistake, the weights are updated with the function update. The two functions they propose in the paper are the perceptron update (shown below) and a variant of the approximate large margin update (ALMA).

LaSO Perceptron Update.png

Experimental Result

Related Papers

In progress by User:Jmflanig