Difference between revisions of "Inside Outside algorithm"

From Cohen Courses
Jump to navigationJump to search
m
m
Line 10: Line 10:
  
 
The algorithm is a dynamic programming algorithm that is often used with chart parsers to estimate expected production counts.
 
The algorithm is a dynamic programming algorithm that is often used with chart parsers to estimate expected production counts.
 +
 +
The algorithm works by computing
 +
 +
The inside probability is defined as <math>\beta(A, i, j)=P(A\Rightarrow\hat{*} w_i...w_j|G, \mathbf{w})</math>, which is the probability of a nonterminal <math>A</math> generating the word sequence <math>w_i</math> to <math>w_j</math>
  
 
=== Inside probabilities ===
 
=== Inside probabilities ===
 
The inside probability is defined as <math>\beta(A, i, j)=P(A\rightarrow w_i...w_j|G, \mathbf{w})</math>.
 
  
 
=== Outside counts ===
 
=== Outside counts ===

Revision as of 11:37, 29 November 2011

This is a Method page for the Inside-outside algorithm.

Background

The inside-outside algorithm is a way of estimating probabilities in a PCFG. It is first introduced [| Baker, 1979]. The inside outside algorithm is in fact a generalization of the forward-backward algorithm (for hidden Markov models) to PCFGs.

It is often used as part of the EM algorithm for computing expectations.

Algorithm

The algorithm is a dynamic programming algorithm that is often used with chart parsers to estimate expected production counts.

The algorithm works by computing

The inside probability is defined as , which is the probability of a nonterminal generating the word sequence to

Inside probabilities

Outside counts