Difference between revisions of "Chang and Blei, AOAS2010"

From Cohen Courses
Jump to navigationJump to search
(Created page with '== Citation == J. Chang and D. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4(1):124–150, 2010')
 
Line 1: Line 1:
 
== Citation ==
 
== Citation ==
 
J. Chang and D. Blei.  Hierarchical relational models for document networks.  Annals of Applied Statistics, 4(1):124–150, 2010
 
J. Chang and D. Blei.  Hierarchical relational models for document networks.  Annals of Applied Statistics, 4(1):124–150, 2010
 +
 +
== Online version ==
 +
[http://www.cs.princeton.edu/~blei/papers/ChangBlei2010.pdf D.Blei's papers]
 +
 +
== Motivation ==
 +
* Network data
 +
  - social networks of friends
 +
  - citation networks of documents
 +
  - hyperlinked networks of web pages
 +
* “Predictive Models”
 +
  - point social network members toward new friends
 +
  - point scientific papers toward relevant citations
 +
  - point web pages toward other related pages
 +
* “Descriptive statistics”
 +
  - uncover the hidden community structure
 +
 +
== Methodology ==
 +
1. For each document <math>d</math>:
 +
 +
  (a) Draw topic proportions <math>\theta_d|\alpha \approx Dir(\alpha)</math>
 +
 +
  (b) For each word <math>w_{d,n}</math>:
 +
 +
      i.  Draw assignment <math>z_{d,n}|\theta_d \approx Mult(\theta_d)</math>.
 +
 +
      ii. Draw word <math>w_{d,n}|z_{d,n},\beta_{1:K} \approx Mult(\beta_{z_{d,n}})</math>.
 +
 +
2. For each pair of documents <math>d</math>,<math>d'</math>:
 +
 +
  (a) Draw binary link indicator
 +
   
 +
              <math>y_{d,d'}|z_d,z_{d'} \approx \psi(.|z_d,z_{d'},\eta)</math>
 +
 +
      where <math>z_d = \{z_{d,1},z_{d,2},...,z_{d,n}\}</math>

Revision as of 12:10, 24 February 2011

Citation

J. Chang and D. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4(1):124–150, 2010

Online version

D.Blei's papers

Motivation

  • Network data
 - social networks of friends
 - citation networks of documents
 - hyperlinked networks of web pages
  • “Predictive Models”
 - point social network members toward new friends
 - point scientific papers toward relevant citations
 - point web pages toward other related pages
  • “Descriptive statistics”
 - uncover the hidden community structure

Methodology

1. For each document :

 (a) Draw topic proportions 
 (b) For each word :
     i.  Draw assignment .
     ii. Draw word .

2. For each pair of documents ,:

 (a) Draw binary link indicator
   
              
     where