Difference between revisions of "DeNero et al, EMNLP 2008"
Line 29: | Line 29: | ||
== Phrase Alignment Model == | == Phrase Alignment Model == | ||
− | The phrase-to-phrase alignment model presented in this work is built upon the work in ([www.isi.edu/~marcu/papers/jointmt2002.pdf Marcus and Wong, 2002]). | + | The phrase-to-phrase alignment model presented in this work is built upon the work in ([http:/www.isi.edu/~marcu/papers/jointmt2002.pdf Marcus and Wong, 2002]). |
Revision as of 22:07, 25 September 2011
Citation
Denero, J., Bouchard-ct, R., & Klein, D.(2008). Sampling alignment structure under a Bayesian translation model. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP '08). Association for Computational Linguistics, Stroudsburg, PA, USA, 314-323.
Online version
Summary
Unlike word-to-phrase alignments, computing the alignment expectations for phrase-to-phrase alignments is generally intractable due to the exponential growth of possible combination of phrases and alignments. Because of this, previous attempts for building a joint phrase alignment model have been unsuccessful.
This paper describes the first tractable phrase-to-phrase Alignment Model, which relies on Gibbs Sampling to tackle the intractability problem.
Tests show translation improvements over Machine Translation Systems build using conventional methods.
Previous Work
Most alignment models can not model many-to-many alignments, since they restrict each word in the target sentence to be aligned with at most one word in the source language. Thus, these models can only model one-to-many alignments, where each source word can be aligned to multiple target words but not the opposite. An efficient way to generate many-to-many alignments is to combine one-to-many alignments with many-to-one alignments, which is called Symmetrization. In this case, we build one-to-many alignments from the source sentences to target sentences and many-to-one alignments in the inverse direction, and combine these together to obtain many-to-many alignments. An easy combination method, but not very used presently, is to perform an union of the alignments, where two words are aligned if those are aligned in either one of the bidirectional alignments.
These alignments are used in the Phrase Extraction Algorithm, where phrase pairs are extracted based on heuristics, such as the alignment template defined by (Och et al, 1999). The phrase translation features are then calculated for each unique phrase pair, based on the available data such as phrase pair counts and alignments. An example of a feature is the translation probability , which is calculated as the phrase pair count ratio:
where c(s,t) is the number of occurrences of the phrase pair with source s and target t.
The main difference between this model and the previous work is that, while the previous work uses fixed word alignments and extracts phrase pairs using heuristics, this work estimates the phrase translation features using an inference procedure that is not restricted by fixed alignments or heuristics.
Phrase Alignment Model
The phrase-to-phrase alignment model presented in this work is built upon the work in ([http:/www.isi.edu/~marcu/papers/jointmt2002.pdf Marcus and Wong, 2002]).