Difference between revisions of "Ravi and Knight, ACL 2011"

From Cohen Courses
Jump to navigationJump to search
Line 23: Line 23:
 
</math>
 
</math>
  
where <math>\theta</math> are the parameters of the model.
+
where <math>\theta</math> are the translation parameters of the model.
 +
 
 +
When only monolingual corpora is used, for each source sentence <math>s</math>, there isn't an exact target sentence that is aligned to the source sentence. Thus, this work considers an additional latent variable, which is the target sentence. Hence, the previous model can be rewritten as:
 +
 
 +
<math>
 +
argmax_\theta \prod_{s,t} \sum_t P(e) \sum_a P_\theta (s,a|t)
 +
</math>
 +
 
  
 
== Experimental Results ==
 
== Experimental Results ==
  
 
== Related Work ==
 
== Related Work ==

Revision as of 13:55, 30 October 2011

Citation

S. Ravi and K. Knight. 2011. Deciphering Foreign Language. In Proceedings of ACL.

Online version

pdf

Summary

This work addresses the Machine Translation problem without resorting to parallel training data.

This is done by looking at the Machine Translation task from the decipherment perspective, where a sentence in the source language is viewed as the sentence target, but encoded in some unknown symbols.

Experimental showed that, while the results using monolingual data were considerably lower than those using bilingual data if the same amount of data is used, large amounts of monolingual data can be used to create models that perform similarly to systems that use smaller amounts of bilingual data. This is encouraging, since bilingual data is a scarce resource for most language pairs and domains, while monolingual data is much more abundant.

Description of the Method

Word Alignments using parallel corpora is viewed as a maximization problem with latent word alignments for a set of sentence pairs , given by:

where are the translation parameters of the model.

When only monolingual corpora is used, for each source sentence , there isn't an exact target sentence that is aligned to the source sentence. Thus, this work considers an additional latent variable, which is the target sentence. Hence, the previous model can be rewritten as:


Experimental Results

Related Work