Difference between revisions of "Chang and Blei, AOAS2010"

From Cohen Courses
Jump to navigationJump to search
Line 53: Line 53:
  
 
== Results ==
 
== Results ==
 +
* Evaluating the predictive distribution
 
[[File:result1.jpg]]
 
[[File:result1.jpg]]
  
[[File:result2-1.jpg]]
+
* Automatic link suggestion
 +
[[File:result2-1.jpg]]  
  
 
[[File:result2-2.jpg]]
 
[[File:result2-2.jpg]]
  
[[File:result3.jpg]]
+
* Modeling spatial data
 +
[[File:result3.jpg]][[File:result4.jpg]]
  
[[File:result4.jpg]]
+
== Related papers ==
 +
[[RelatedPaper::Airoldi et al, ML2008]] AIROLDI, E., BLEI, D., FIENBERG, S. and XING, E. (2008). Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9 1981–2014.
 +
 
 +
[[RelatedPaper::Blei et al, NIPS2007]] BLEI, D. M. and MCAULIFFE, J. D. (2007). Supervised topic models. In Neural Information Processsing Systems. Vancouver.
 +
 
 +
[[RelatedPaper::Dietz et al, ICML2007]] DIETZ, L., BICKEL, S. and SCHEFFER, T. (2007). Unsupervised prediction of citation influences. In Proc. ICML. Available at http://portal.acm.org/citation.cfm?id=1273526.
 +
 
 +
[[RelatedPaper::Nallapati et al, ACM2008]] NALLAPATI, R., AHMED, A., XING, E. P. and COHEN, W. W. (2008). Joint latent topic models for text and citations. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 542–550. ACM Press, New York.

Revision as of 12:42, 24 February 2011

Citation

J. Chang and D. Blei. Hierarchical relational models for document networks. Annals of Applied Statistics, 4(1):124–150, 2010

Online version

D.Blei's papers

Motivation

  • Network data
 - social networks of friends
 - citation networks of documents
 - hyperlinked networks of web pages
  • “Predictive Models”
 - point social network members toward new friends
 - point scientific papers toward relevant citations
 - point web pages toward other related pages
  • “Descriptive statistics”
 - uncover the hidden community structure

This paper developed a hierarchical model of both network structure and node attributes, based on Latent Dirichlet Allocation.

Methodology

RTM.jpg

1. For each document :

 (a) Draw topic proportions 
 (b) For each word :
     i.  Draw assignment .
     ii. Draw word .

2. For each pair of documents ,:

 (a) Draw binary link indicator   
              
     where 

Inference, Estimation and Prediction

  • Inference
  • Estimation
  • Prediction
 - Link prediction from words
   
 - Words prediction from link
   

Data

  • Cora: abstracts + citation link
  • WebKB: web pages + hyperlinks
  • PNAS: abstracts + intra-PNAS citation
  • LocalNews: local news of each state in U.S + geographical adjacency

Results

  • Evaluating the predictive distribution

Result1.jpg

  • Automatic link suggestion

Result2-1.jpg

Result2-2.jpg

  • Modeling spatial data

Result3.jpgResult4.jpg

Related papers

Airoldi et al, ML2008 AIROLDI, E., BLEI, D., FIENBERG, S. and XING, E. (2008). Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9 1981–2014.

Blei et al, NIPS2007 BLEI, D. M. and MCAULIFFE, J. D. (2007). Supervised topic models. In Neural Information Processsing Systems. Vancouver.

Dietz et al, ICML2007 DIETZ, L., BICKEL, S. and SCHEFFER, T. (2007). Unsupervised prediction of citation influences. In Proc. ICML. Available at http://portal.acm.org/citation.cfm?id=1273526.

Nallapati et al, ACM2008 NALLAPATI, R., AHMED, A., XING, E. P. and COHEN, W. W. (2008). Joint latent topic models for text and citations. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 542–550. ACM Press, New York.