|
|
Line 70: |
Line 70: |
| | | |
| <math>P(w_v|z) = \frac{n_{z}^{w_v} + \beta_v}{\sum_{v'} n_{z}^{w_{v'}} + \beta_{v'}}</math> | | <math>P(w_v|z) = \frac{n_{z}^{w_v} + \beta_v}{\sum_{v'} n_{z}^{w_{v'}} + \beta_{v'}}</math> |
| + | |
| | | |
| <math>P(z|a,a',r) = \frac{n_{a,a',r}^{z} +\alpha_{z}}{\sum_{z'} n_{a,a',r}^{z'} + \alpha_{z'}} \frac{n_{r} + \eta_{r}}{\sum_{r'} (n_{r'} + \eta_{r'})}</math> | | <math>P(z|a,a',r) = \frac{n_{a,a',r}^{z} +\alpha_{z}}{\sum_{z'} n_{a,a',r}^{z'} + \alpha_{z'}} \frac{n_{r} + \eta_{r}}{\sum_{r'} (n_{r'} + \eta_{r'})}</math> |
| + | |
| | | |
| <math>P(a,a',r|z) \propto P(z|a,a',r) P(a,a',r)</math> | | <math>P(a,a',r|z) \propto P(z|a,a',r) P(a,a',r)</math> |
| + | |
| | | |
| <math>P(a'|r,a,z) \propto \frac{P(a,a',r|z)}{P(r=0,a|z)} \propto P(a,a',r|z)</math> | | <math>P(a'|r,a,z) \propto \frac{P(a,a',r|z)}{P(r=0,a|z)} \propto P(a,a',r|z)</math> |
| + | |
| | | |
| <math>P(z|a) = \frac{\sum_{a',r} P(z|a,a',r)P(a,a',r)}{\sum_{a',r,z} P(z|a,a',r)P(a,a',r)}</math> | | <math>P(z|a) = \frac{\sum_{a',r} P(z|a,a',r)P(a,a',r)}{\sum_{a',r,z} P(z|a,a',r)P(a,a',r)}</math> |
Team members
Nitin Agarwal
Yandong Liu
Yanbo Xu
Ming Sun
LDA results
- Used ACL 2008 corpus for experimentation
- For exploratory analysis of corpus we ran the LDA model
- Parameters of the LDA model
- Number of topics : 100
- Gibbs iteration : 2000
- Beta prior : 0.5
- Alpha prior : 1.0
Some of the topics obtained post training
- Error Detection (Topic 6)
- errors, error, correct, rate, correction, spelling, detection, based, detect, types, detecting
- Evaluation (Topic 10)
- evaluation, human, performance, automatic, quality, evaluate, study, results, task, metrics
- Entity Coreference (Topic 13)
- names, entity, named, entities, person, coreference, task, ne, recognition, proper, location
- Parsing (Topic 18)
- parsing, parser, parse, grammar, parsers, parses, input, chart, partial, syntactic, parsed, algorithm
ATM results
Gibbs Sampling for Collaboration Influence Model
We want , the posterior distribution of topic Z, (author, collaborator) pair X and which favor of collaboration over influence R given the words W in the corpus:
We begin by calculating and :
,
where P is the number of all the different author-collaborator-favor of collaboration combination (a,a',r).
So the Gibbs sampling of :
Further manipulation can turn the above equation into update equations for the topic and author-collaboration of each corpus token:
Applications