Posterior Regularization for Expectation Maximization

From Cohen Courses
Revision as of 17:35, 29 September 2011 by Lingwang (talk | contribs)
Jump to navigationJump to search

Summary

This is a method to impose contraints on posteriors in the Expectation Maximization algorithm, allowing a finer-level control over these posteriors.

Method Description

For a given set of observed data, a set of latent data and a set of parameters , the Expectation Maximization algorithm can be viewed as the alternation between two maximization steps of the function , by marginalizing different free variables.

The E-step is defined as:

where is the Kullback-Leibler divergence given by

The M-step is defined as: