Inside Outside algorithm

From Cohen Courses
Revision as of 11:49, 29 November 2011 by Ysim (talk | contribs)
Jump to navigationJump to search

This is a Method page for the Inside-outside algorithm.

Background

The inside-outside algorithm is a way of estimating probabilities in a PCFG. It is first introduced [| Baker, 1979]. The inside outside algorithm is in fact a generalization of the forward-backward algorithm (for hidden Markov models) to PCFGs.

It is often used as part of the EM algorithm for computing expectations.

Algorithm

The algorithm is a dynamic programming algorithm that is often used with chart parsers to estimate expected production counts. Here, we assume the grammar is of Chomsky Normal Form.

The algorithm works by computing 2 probabilities for each nonterminal and span .

Inside probabilities

The inside probability is defined as , which is the probability of a nonterminal generating the word sequence to .

The inside probability can be calculated recursively with the following recurrence relation:

Intuitively, this can be seen as computing the sum over all possible ways of building trees rooted by and generating the word span .

For the base case, it is simply .

Outside counts

The outside probability is defined as

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta(A,i,j)=\sum_{B,C}\sum{1\leq k<i}p(B\rightarrow CA}\alpha(C,k,i-1)\beta(B,k,j) + \sum_{B,C}\sum{j< k\leq n}p(B\rightarrow AC}\alpha(C,j+1,k)\beta(B,i,k)}

Putting them together