IBM Model 1
Model
IBM Model 1 defines the probability of a sentence , with length , being translated to a sentence , with length , with the alignment as:
Where the alignment is a function that maps each word to a word , by their indexes. These alignments can be viewed as an object for indicating the corresponding words in a parallel text. We can see that the sentence translation probability , is decomposed into the product of the lexical translation probabilities of each word in the target with the word that it is aligned to in the source . Additionally, target words that are not aligned with any source word are aligned with the null token, with the a lexical translation probability given by . These are referred as null insertions. The normalizing factor ensures that is a probability and is normalized over all possible alignments and all possible translations .
One of the problems of the IBM Model 1 is that it is very weak to reordering, since is calculated using only the lexical translation probabilities . Because of this, if the model is presented with 2 translations candidates and with the same lexical translations, but with different reordering of the translated words, the model scores both translations with the same score.