Posterior Regularization for Expectation Maximization

From Cohen Courses
Revision as of 17:18, 29 September 2011 by Lingwang (talk | contribs)
Jump to navigationJump to search

Summary

This is a method to impose contraints on posteriors in the Expectation Maximization algorithm, allowing a finer-level control over these posteriors.

Method Description

For a given set x of observed data, a set of latent data z and a set of parameters , the Expectation Maximization algorithm can be viewed as the alternation between two maximization steps. Where the E-step is defined as: