Posterior Regularization for Expectation Maximization
From Cohen Courses
Jump to navigationJump to searchSummary
This is a method to impose contraints on posteriors in the Expectation Maximization algorithm, allowing a finer-level control over these posteriors.
Method Description
For a given set x of observed data, a set of latent data z and a set of parameters , the Expectation Maximization algorithm can be viewed as the alternation between two maximization steps. Where the E-step is defined as:
where is the Kullback-Leibler divergence given by